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EXECUTIVE SUMMARY

This report summarizes changes in heavy rainfall frequency and intensity using historical
observations and bias-corrected future projections. In addition, a comprehensive evaluation of
three heavy rainfall events that were responsible for flooding in the City of Virginia Beach
during 2016, and comparison to regional Probable Maximum Precipitation estimates is
provided. Finally, we provide a review of rainfall design guidance in the context of non-
stationarity and future conditions. Based on the analyses and findings within the report,
subsequent discussions with City engineers, as well as our own subject matter expertise, we
recommend that the City increase design rainfall intensities by 20% to account for already
occurring and/or future increases in heavy rainfall. Below we present the findings that support
this recommendation.

Historical trends show increases in 24 -hour Annual Maximum Series . Chapter 1
of the report calculates trends in Annual Maximum Series (AMS) in the Virginia Beach region.
AMS is the key variable used to develop design rainfall guidance such as NOAA Atlas 14, hence
it carries significant weight for design purposes. Over the 70-year period of the Norfolk Airport
rain gage, there has been a 0.2 inch per decade trend, oabout 7% per decade showing
increases in the Annual Maximum Series of 24-hour rainfall. Extending the rainfall record
further back to the early 1900s suggests a smaller increase of about 3% per decade, though this
is statistically significant. Given that land development planning considers time scales of
several decades or more, it is very likely that the already observed changes have resulted in an
increase in runoff to current levels that exceed the original design specifications. An analogous
argument applies for current planning for future land development.

Moreover, Chapter 1 showed the increases are not just limited to Virginia Beach but are
observed along the entire coastline of the northeast United States, strongly suggesting the
changes are not simply localized statistical artifacts.

Future Projections Generally Show Increases In Heavy Precipitation . Chapter 2
of the report used bias-corrected future projections of heavy rainfall derived from downscaled
global climate models to estimate changes in the Precipitation-Frequency Curve. Two future
scenarios were considered: the intermediate emissionRepresentative Concentration Pathway
(RCP) 4.5, and the high emission RCP8.5. Furthermore, for RCP8.5, two different sets of
simulations were analyzed: one using high resolution models and one using medium resolution
models. The high resolution model simulations were unavailable for the RCP4.5 scenario at he
time of the analysis.
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Across the entire PF curve the RCP4.5 scenario showed an increase of 4% by 2045 and 6%
by 2075. However, the increases were most drastic for the more frequent events; for example,
the 1 in 2 year event was projected to increase by6%.Assuming an estimated planning
time frame of 40 years into the future (~2060), averaging the 2045 and 2075
projections for  the RCP4.5 scenario  suggests a ~5% increase in the PF curve.

Meanwhile, the analogous RCP8.5 scenario projected an overall incease of 16% by 2045
and 32% by 2075. The higher resolution models projected similar or even greater overall
increases of 22% by 2045 and 31% by 2075. Once agaiassuming an estimated planning
time frame of 40 years into the future (~2060 ), the RCP8 .5 scen ario s suggest
increase s in the PF curve of about 24% to 27%, depending on model resolution

Historical gage -based Precipitation  -Frequency curve estimates are on the
higher end of NOAA Atlas 14. NOAA Atlas 14 Precipitation-Frequency (PF) guidance for
Virgin ia Beach was developed by fitting several statistical distributions to local gage estimates,
followed by selecting the one with the best fit. However, it is essential to note that the
distribution is statistical, and not physical based. In turn, there are frequently situations where
parts of the Atlas 14 PF curve may differ from the empirical PF curve of gages contributing to
Atlas 14.To illustrate, the plot below shows the Atlas 14 PF estimates for 24hour rainfall at
Virginia Beach, compared to two long-record gages for the area: Norfolk Airport (ORF) and the
Oceana Naval Air Station (NAS). Note that overall, the Atlas 14 fit does a reasonable job of
capturing the gage estimates. On the other hand, a closer inspection shows potentially
noteworthy differen ces.For example, the Atlas 14 estimate for the 10 year event is 5.6
inches, with a range of 5.2 to 6.2 inches when incorporating uncertainty.
However, the analogous empirical estimates from ORF and NAS are 6.2 and 6.0
inches , which is 7 -10% higher than Atlas 14 guidance . The 10 -year rainfall for is of

particular importance because it is currently used for runoff modeling especially
in the context of land development . It is possible that without any changes in
future conditions, the Atlas 14 gu idance is cur rently underestimating the local 10 -

year rainfall amount.

The differences between empirical gage estimates and Atlas 14 are not readily apparent but
may be due to the fact that different processes are responsible for relatively more frequent
events (e.g. 28 year) versus less frequent events (e.g. 14100 year). For example,Nor 6 east er s
can be responsi bl e for a ghoureamfallybetagenéraly db nob u a | Ma
produce precipitation exceeding the 1 in 10 year value. Meanwhile, tropical events while less
frequent, produce the majority of the more extreme rainfall events.
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Precipitation—Frequency Estimates For Virginia Beach Area
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In summary,

9 Historically, precipitation Annual Maximum Series have trended upward between 3 -7%
per decade. Using an average of 5%would suggest a 20% increase given a 46year
horizon.

1 Future projections support increases of 5% for the intermediate scenario to 24-27% in
the high scenario by 2060. A blend of the two to account for uncertainty in the actual
outcome warrants a 1516% increase.

91 Current Atlas 14 guidance for the 10 year rainfall event may be 710% below the actual
localized value based on analysis of two longrecord rain gages in the area. If such is the
case, then even using the intermediate RCP4.5 projections of 5% wouldalready warrant
a 1215% increase in the Precipitation Frequency curve.

Given these observations, an increase of the Ci
justified. We recommend an increase of 20% over existing guidance for projects that havea
typical lifecycle of 40 years.
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INTRODUCTION

Analysis of historical trends in observed rainfall have ind icated increases in heavy rainfall
occurrence across the entire contiguous United States.Figure 1, from the 3rd National Climate
Assessment (NCA Melillo et al. 2014) report, shows the percent change in the occurrence of 1%
daily rainfall, using the 1958-1988 period as the baseline. Although increases in heavy rainfall
frequency havebeen observedacross the entire US, particularly strong changeshave been
documented in the Northeast, Southeast and Upper Mississippi River valley regions. The
implications o f Figure 1are especially noteworthy for the Northeast and Mid -Atlantic regions,
but it is difficult to use such regionally aggregated results for local-scale decision support.

Observed Change in Very Heavy Precipitation

Change (%)

<0 0-9

10-19  20-29

30-39 40+

Figurel: Observed changeenyheavy precipitatievents (i.e. downpours, the heaviest 1% of annual rainfall
events)Source i89¢National Climate Assessrhépt//nca2014.globalchange.gov/nepairéieginglimate/heavy

downpous#sicreasing

@ Dewberry

Analysis of Historical and Future Heavy Precipitation | 1


http://nca2014.globalchange.gov/report/our-changing-climate/heavy-downpours-increasing
http://nca2014.globalchange.gov/report/our-changing-climate/heavy-downpours-increasing

In this document, we perform a comprehensive investigation of heavy rainfall trends and
probable maximum precipitation within the Virginia Beach (hereafter, AiVBO0) area. In Chapter
1,we consider only historical data and perform gagelevel, local-level and regional-level
analyses. Frequency and intensity changes are considered separately to increase confidence in
the analysis.

In Chapter 2, we investigate future projections of heavy rainfall using relatively high-
resolution simulations based on the Intergovernmental Panel on Climate Change (IPCC)
Coupled Model Intercomparison Project, Phase 5 (CMIP5). CMIP5 was used to inform the
| P C CloAssegsment Report on expected climate change impacts across the worldSignificant
peer-reviewed literature has suggested that increases in heavy rainfall are likely for the VB area
(Wehner, 2013; Prein et al. 2016). However, these studies were regionallyaggregated. Our goal
in this study is to corroborate or provide dissenting evidence for the immediate VB area.

Chapter 3 performs a comprehensive evaluation of three heavy rainfall events that were
responsible for flooding in the City of Virginia Beach during 2016. The main objective was to
determine how observed rainfallamount s compar ed t o t-tequery ceraed s
for a variety of durations. A secondary objective was to compare the rainfall temporal
distribution with that of the currently used design storm, the NOAA Type C storm. The final
objective wastoeval uate how each event compared to t
Precipitation (PMP) estimates.

Finally, Chapter 4 provides a review of rainfall design guidance, as related to non
stationarity and future conditions. A succinct summary of existing Federal and state guidance
documents is provided reviewed along with a summary of limited telephone interviews.

Our intent is to make findings as relevant as possible for engineering applications. Thus, we
frequently use methods involving rainfall Annual Maximum Series (AMS), which is the root of
design-rainfall analyses such as NOAA Atlas 14. Our analysis is focused almost exclusively on
the 24-hour duration event, which accurately captures the extent of most flood-prone rainfall
events in the area.

Conclusions from each of the Chapters are summarized at the end of the document.
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CHAPTER 1: HISTORICAL ANALYSIS
Climatology

The City of Virginia Beach is located in extreme southeast Virginia, where the climate can
be described as humid subtropical. Because snowr@ r esent s | ess t han 2% of
precipi ratciomt afip ono and 0 rusedintérchdngeablyvvetage her e af
annual precipitation is about 46 inches and is relatively well distributed throughout the year.
Each month of the year averages at least 3 inches of rainfall, though the wettest months of the
year are from June through September due to the influence of diurnal thunderstorm activity
and tropical disturbances with Atlantic Ocean origin.

Analysis of heavy rainfall in the VB area reveals significant seasonality that is not reflected
when considering only average statistics. The 24hour precipitation -frequency curve for VB is
shown in Figure 2, asreproduced from NOAA Atlas 14 Volume 2, Version 3(Bonnin et al.,
2006). This curve, using data through 2013, shows thatfive-year 24-hour rainfall is 4.7 inches
(range of 4.3 to 5.2 when incorporating uncertainty), 2 5-year 24-hour rainfall is 7.0 inches
(range of 6.3to 7.7), and 100-year rainfall is 9.4 inches (range of 8.4 to 10.3). Howeve, as
shown in Figure 3, the chanceof experiencing heavy rainfall is significantly skewed towards the
Juned October period. For example, the chance of experiencing awo-year 24-hour event is
about 13 times higher in Septemberas compared to April.

Bl LR !

10 fii LT

Precipitation depth (in)

i

o1 | |
1 50100 200 500 1000
Average recurrence interval (years)

Figue 2 NOAA Atlas 14 precipitdteuency curves foh2dr rainfall for a location rigarhé black curve is the
Amost | ikelyodo estimate, while the green anwl. red cur
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To gain a deeper understanding of VBO0Os heavy
meteorological analysis of each event over the past 70 years that produced at leds3.7 inches of
rainfall over a 24-hour period at either the Norfolk or V B long-record rain gages. This value
corresponds to roughly the one in two-year (50% chance)event. For each of the 53 identified
events, we noted the 24hour and 72-hour rainfall at both gages and performed two additional
classifications. First, we noted whether the event was Tropical (or Extra-tropical) or Non -
tropical i n origin (e. g.NotdthataneEatra-trapical obassificatiom t i o0 n a
indicates the event had some direct connection to the Tropics, but was not officially classified
as a tropical storm or hurricane at the time of influence. Second, we subgctively assessed
whether the immediate VB area was under themaximum event accumulation,or A Bu | |,efey e 0
the regional rainfall field produced by the event. The Bullseye classification was meant to
inform whether or not VB experienced a worst-case scenario outcome from the event. Note that
each ev e rcasé enarioigdsependent on the atmospheric processesavailable for its
formation, and there is large eventto-event variability in worst -case scenarios. Results are
shown in Table 1.

Of the 53 events, 17 were classified as Tropical, 5 as Extr&ropical and 31 as Non-tropical. It
is worth noting that 12 of the 17 Tropical events have occurred since 1998, which equates to an
average ofabout two events every three years. In comparison there was atotal of five Tropical
eventsover the 1946-1997 period, which equates to an average of one event every ten year
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This is important because Tropical events cause higher rainfall amounts: at the Norfolk gage,
the mean 24-hour amount across all Tropical events was 4.99 inches, the Extratropical mean
was 4.31 inches and the Nontropical mean was 3.65 inches. Furthermore, Tropical events have
accounted for the five highest 24-hour accumulations at the Norfolk gage. Thus, the results in
Table 1 show that one reason for apparent increase in heavy rainfall in the VB area has been
due to a recent active stretch of Tropicalrelated events. An unanswered question raised by this
analysis is whether this is due to climate change or chance. This was not investigated by the
current study.

Tablels hows another noteworthy result regarcci ng t|
53 events, 24 were identified as Bullseye hits and 29 were classified as norBullseye. This

implies that over the period of record (1946 -present) every other event was a Bullseye.

However, since 2003, 11 of 13 events were classified as Bullseye hits. Trsggnificance of this is

similar to the Tropical versus Non -tropical classification: at the Norfolk gage, the mean 24-

hour rainfall for Bullseye events is 4.98 inches while non-Bullseye events average 3.44 inches.

Thus, Table 1 implies that VB has seen arabnormally high number of Bullseye events over

approxi mately the past 15 years, r escualstei nsgc einnara
type outcomes that were less frequent earlier in the gage record. This has also contributed to

the apparent increase in heavy rainfall intensity. There is no basis for attributing this to climate
change, and a coincliudehceexplrasampor iNdbaalterna
overall, the meteorological analysis shown in Table 1 suggests that the increasg occurrence of

both Tropical and Bullseye events has unquestionably contributed to higher rainfall intensity in

the past two decades, while discounting climate change as the major factor, though it is likely a
secondary contributor to an increase in rainf all for any given event.

Gage-Level Stationarity Assessment

Design rainfall, such as NOAA Atlas 14, is typically developed using rain gage data. Such
data is often referred to as Apointo data becau
point i n space (for example, a typical rain gage has a surface area of less than B}t The benefit
of conducting a gagelevel stationarity analysis is that data is consistent and, given a long
record length such as that seen in the VB area, the gage provides nmay observation points from
which statistical significance can be inferred.
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Tablel: Summary ofateorological analysis of dlb24 rainfall events exceeding the ong@atwecurrence interval
(3.7 inchedetween 194Hd 2016 si ng t he Nor f ol k Airport (fANorfol ko)
gage data. A doulie border is used to separate events into decades.

Norfolk Virginia Beach Origin Bullseye

1 11/21/1952 3.31 | 409 ] 4.18 | 5.31 | Nontropical No
2 8/13-8/14, 1953] 3.46 | 6.28 | 6.05 | 10.78 Tropical Yes
3 8/17/1953 2.00 | 2.00 | 4.14 | 4.14 | Nontropical No
4 9/27/1953 2.67 | 275 | 3.93 | 4.02 | Extratropical No
5 8/12/1955 447 | 462 | 3.85 | 4.01 Tropical Yes
6 8/19/1957 2.97 | 3.22 | 5.09 | 5.29 | Nontropical No
7 9/17/1957 163 | 1.99 | 501 | 5.17 | Nontropical No
8 6/2/1959 147 | 159 | 4.80 | 4.83 | Nonttropical No
9 9/28/1959 6.48 | 6.80 | 2.34 | 2.58 | Nontropical No
10 10/24/1959 3.71 | 419] 1.75 | 2.03 | Nontropical No
11 8/5/1961 445 | 487 ] 0.36 | 0.56 | Nontropical No
12 10/3/1962 3.30 | 412 | 597 | 7.27 | Nontropical No
13 6/2/1963 5.76 | 7.64 | 3.96 | 5.33 | Nontropical Yes
14 9/15/1963 498 | 5.30 | 2.83 | 3.26 | Nonttropical Yes
15 8/31-9/1,1964 | 7.41 | 11.71)| 9.84 | 14.14 Tropical Yes
16 9/13/1964 473 | 4.80 | 3.41 | 3.49 | Extratropical No
17 7/30/1966 3.70 | 3.70 | 3.01 | 3.05 | Nontropical No
18 1/8/1967 3.74 | 3.80 | 155 | 1.56 | Nontropical Yes
19 8/24/1967 3.81 | 476 | 0.05 | 1.25 | Nontropical No
20 3/17/1968 294 | 3.15 | 4.09 | 4.30 | Nontropical No
21 7127/1969 472 | 7.07 | 1.95 | 3.29 | Nontropical No
22 9/30/1971 349 | 648 | 3.75 | 6.68 Tropical No
23 9/2/1972 1.16 | 1.21 | 4.09 | 4.12 | Extratropical No
24 7126/1974 3.81 | 390 | 3.18 | 4.21 | Nontropical Yes
25 7/9/1976 0.56 | 0.56 | 4.09 | 4.12 | Nontropical Yes
26 9/5/1979 431 | 460 ] 3.85 | 3.85 Tropical Yes
27 8/15/1980 413 | 4.13 ] 4.28 | 4.30 | Nonttropical Yes
28 8/12/1986 0.73 | 1.69 | 5.29 | 8.34 | Nontropical No
29 7/11/1990 1.07 | 1.62 | 5.88 | 6.63 | Nontropical No
30 8/24/1990 432 | 5.01 | 1.47 | 2.49 | Nontropical No
31 4/20/1991 5.86 | 5.92 | 3.06 | 3.07 | Nontropical Yes
32 6/22/1991 1.66 | 1.86 | 4.55 | 4.67 | Nontropical No
33 3/2/1994 3.78 | 4.38 | 2.78 | 3.49 | Nontropical No
34 2/4/1998 475 | 5.18 | 6.05 | 6.35 | Nontropical No
35 8/27/1998 3.77 | 6.88 | 293 | 3.39 Tropical No
36 9/15/1999 503 | 6.81 | NA NA Tropical Yes
37 10/17/1999 6.23 | 7.29 ] NA NA Tropical Yes
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Tablel, continue®ummary ofateorological analysis of dilbR4 rainfall events exceeding the ong@atwo
recurrence interval (3.7 intietg)een 194Hd 2018 si ng t he Norf ol k Airport (ANo
(AVirginia Beac hling bordeais useddossgparatadeaentainto décadk®. u b | e

Norfolk Origin Bullseye

38 6/16/2001 439 | 451 ]| 4.48 | 4.55 Tropical No
39 9/16/2002 3.79 | 3.96 | 145 | 1.45 | Nontropical No
40 10/11/2002 3.45 | 3.61 | 5.33 | 5.40 Tropical No
41 9/18/2003 4.02 | 402 | 212 | 2.15 Tropical Yes
42 8/14/2004 3.72 | 575 | 2.66 | 3.73 Tropical Yes
43 6/14/2006 4.06 | 4.06 NA NA | Extratropical Yes
44 9/1/2006 8.93 | 10.22] NA NA | Extratropical Yes
45 11/12/2009 490 | 7.71 ] 6.96 | 10.56 ] Nontropical Yes
46 7/29/2010 464 | 464 | 3.58 | 3.58 | Nontropical No
47 9/30/2010 785 | 890 | 3.57 | 4.25 Tropical Yes
48 8/27/2011 792 | 819 | NA NA Tropical Yes
49 | 10/28-10/29, 2012 3.87 | 6.25 | 4.78 | 9.54 Tropical Yes
50 9/8/2014 3.05 | 4.78 | 5.13 | 6.66 | Nontropical Yes
51 7/31/2016 6.98 | 755 | 1.41 | 1.85 | Nontropical No
52 9/20-9/21, 2016 | 3.93 | 9.35 | 3.92 | 6.97 Tropical Yes
53 10/8/2016 7.44 | 924 | 7.70 | 7.70 Tropical Yes

For this analysis, we selected the Norfolk Airport rain gage (GHCN USW00013737), which
contains no more than nine missing days in any given year since 1946. A secondary gage, the
Diamond Springs gage (GHCN USC00442368), is located less than one mile from the Norfolk
Airport gage and was used to extend the data through 1911.

Figure 4 showsthe time series of the Annual Maximum Series (AMS) of daily rainfall data
for the Norfolk gage, alone. The mean value is 3.6 inches, though the data is heavily skewed
with a strong right tail. The 10t and 90t percentile of the AMS is 2.2 and 5.9 inches,
respectively, reiterating the significant skew due to rare, but high amounts. A linear trend fit to
the time series shows a statistically significant positive trend with a magnitude of about 1.98
inches per century. Visual inspection of Figure 4 also cleaily indicates the presence of low
frequency variations with a period of approximately 50 years. For example, note the occurrence
of multiple high peaks in the late 1950s and 1960s, followed by a relative lull in the 1980s,
during which no events abovefive inches were observed, followed by a resurgence in the late
1990s through the present.
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As the flooding threat is not restricted to the highest -intensity AMS events, we also
investigate changes in rainfall frequency using the PeaksOver-Threshold (POT) approach.
Figure 5 shows the resulting time series of annual POTSs using a threshold of 1.25 inches per
day. This value was selected because it results in an adequate number of events per year from
which statistical significance can be assessedLater in the analysis, a POTmethod using
accumulated event occurrence is explored for the one in twoyear and one in five-year event
intensity. The mean value in Figure 5 is 7.7 days per year, though a positive trend is apparent.
A linear trend fit to the time series again shows a statistically significant positive trend with a
magnitude of 4.3 days per century, implying a strong increase given that this is more than 50%
of the mean value. This slope is significant at the 95% confidence levelThus, the results of
Figures 4 and 5 show robust increases in both the intensity and frequency of heavy rainfall at
the Norfolk Airport gage since 1946.

Annual Maximum Series at Norfolk Airport
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Peaks Over Threshold at Norfolk Airport
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Figurés. Same as Figure 4 except for annual daily rainfall events exceeding 1.25 inches.

Since heavy rainfall statistics can be extremely sensitive to the length of the data record, a
longer record provides more confidence if a trend is detected. To extend the Norfolk Airport
record length, we used the nearby Diamond Springs gage This gagewas in service from 1911
through 1980 and thus overlapped with the Norfolk Airport gagefor 34 years. However, a
scatter plot of AMS between the two gageqFigure 6, left panel) shows a surprising amount of
spread. This was determined to becaused bya difference in the observation time at the two
gages. To correct this issue, hourly data is needed, but this is not available at the Diamond
Springs gage Another method of correcting the timing issue is to use longer durations such as
the 48-hour rainfall totals. As shown in the right panel of Figure 6, using the 48 -hour AMS
shows a nearone to one relationship between the two gages and thus was used to extend the
record length.
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Figure 7 showsthe 48-hour AMS when combining the Norfolk Airport and Diamond
Springsgages ( her eafter, dabd. Eheldeadddrecdrdwas aveatkd by first
finding Diamond S pmandithergsapérsedingSenvvath theeNorfolk Airport
value (though the order of this operation could be switched with no effect on the final result).
Although the Diamond Springs gagedata is available through 1911, there were many years with
insufficient record coverage (defined as ten or more missing days per year)as seen by the gaps
in Figure 7. Nonetheless, the blended Norfolk record continues to show a positive trend in AMS
intensity. However, the slope is now lower at 1.3 inches per century (though still statistically
significant at the 95% confidence level), compared to nearly 2 inches per century in Figure 4.
Thus, a comparison of Figures 4 and 7 suggest that there has been a recent acceletion in the
AMS trend, a portion of which may be due to climate change. Appendix A shows that climate
modeling of the historical record indica tes that, at least for temperature data, an
anthropogenic-forced climate began to differ from a natural climate in the mid-1980s, or about
30 yearsprior to the current study . Thus, of the 71 qualifying years of the Norfolk Airport AMS
(Figure 4), almost 50% of the record can be expected to be influenced by climate change.
Meanwhile, the Norfolk blended record, at 106 years in length, is only expected to be
influenced by climate change for 30% of its observations. This would explain the weaker trend
in Figure 7 compared to Figure 4, though it is essential to stress that the trend in Figure 7 is
still statistically significant.
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48-hr Annual Maximum Series at Norfolk [2 gage blend]
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Figurer: Trend in the-H8ur AMS at the blended Ngedgkcombining Norfolk Airport and Diamagd Epgage
data).

Figure 8 shows the annual POT series and trend at the blended Norfolk gagewhen using a
48-hour duration and a threshold of two inches. Similarly, to Figure 5, this value was used to
provide an adequate number of events per year evenliough not all events will cause a flood
risk. Additionally, as in Figure 5, a visual inspection suggests a clear upward trend, which is
confirmed using a linear regression. However, the linear trend, with a magnitude of 1.9 days
per century, is only significant at the 88% confidence level. Thus, when interpreting only data
from the Norfolk Airport gage(Figures 4, 5), the trends in AMS and POT would appear
overstated compared to a longerterm record at this location. This does not diminish the fact,
however, that AMS and POT are still found to increase, though the overall significance was
more robust for AMS than for POT.
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Peaks Over Threshold at Norfolk [2 gage blend]
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Figure8: Same as Figure 7 except for atghaliPeakOverThresholdvith a thresholdwbinches

Local-Level Stationarity Assessment

The benefit of conducting gage level stationarity analysis, as was shown in the previous
section, is its simplicity in assessing results. However, a notable limitation is that a gagelevel
analysis does not directly inform the flood threat since flooding is more closely tied to rainfall
volume versus a point amount. We have leveraged the availability of an increasing number of
guality -controlled rain gageo bser vati ons to briefly investigat
|l evel 06 rainfall analysis.

Figure 9 showsthe method used for the local-level analysis. First, a radius of interest
centered on VBwas selected. A radius of 60miles was used in order to capture all storms that
either hit VB or were in very close proximity . Next, we accessed all available qualitycontrolled
rain gages within the radius of interest. This included data from Cooperative Observer Program
(COOP), Remote Automatic Weather Systems RAWS), Weather-Bureau-Army-Navy (WBAN)
and Community Collaborative Rain, Hail and Snow Network (CoCoRaH9 observational
networks. Finally, we calculated the AMS value of daily rainfall across all gages regardless of
missing data. In addition to tracking the AMS, we also noted the number of contributing gages
foreachyea 6 s AMS, as wate drea eosered hygagesawhghrweeg t er med A cov
aread. To calculate the latter statistic, we subjectively gave eachgagea five-mile radius of
influence and then tracked the union of all contributing gages 6 ¢ o v e r. &8hgs eneaauree a s
was meant mainly for informational purposes. Figure 9 shows the overlapping coverage area
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for all available gages during 2015, when the gage count was highest-igure 10 showsthe

results of the analysis.

& % O
@@ Ellzab|ty

o 7 A
North Carolina \4’/"/ /‘73'?‘2{%
Z7%

0510 20 30 40
ey Viles

Legend

*  Contributing Gauge

E 60-mile radius
Gauge "coverage”

@ City

Figur&:Met hod used

their Acoverageo area.

In Figure 10a, we see that by including all gages within the 60 -mile VB radius of interest, we
can now extend the 24-hour AMS record back through 1869 (though as Figure 10b shows only
1gageis available from 1869 through 1892 for this analysis). The most notable result from
Figure 10a is that there has been a tremendous icrease in 24-hour AMS at the local level. A
trend line fit to this analysis shows a positive slope exceeding 3.0 inches per century, and is
statistically significant at the 99% confidence level. However, amajor complication in fi tting a
simple trend line is that there has also been a large buildup of quality controlled stations. In
other words, heavy rainfall events have become better sampled, which alone could cause an

fdrevedmduatiinigld falnad ylsi s .

increase in values regardless of whetheror not other factors such as climate changeare

present.
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Figure 10b shows three main time periods at which the gagenetwork sharply increased.
First, in 1893, four rain gages were addedto the original gageproviding a total of five gages.
Next, starting around 1940, the gagecount again increased from about six to more than 20 by
1950. A notable increase in the AMS intensity was associated with this,simply from better
monitoring of the area. The final, and most dramatic increase in gagecount started around
2000 when contributing gages increased fromabout 15 to over 100 in 2015[see Figure 9 for
20159 a gosvergea r d.dalis was due to the expansion of the CoCoRaHS networkAnother
notable increase in AMS in the areahas been associated with this increase For example, of
eight AMS values exceedingten inches since 1869, seven haveoccured si nce t he ACO
erao started in the | ate 1990s.

As Figure 10c shows, therehas been an associated increase in the collectivgageii c over ag e
area. Figure 9 shows that in 2015, the coverage area, which is the union of eaclyaged s as si gne
five-mile radius, now covers over 70% of the land area with the 60 mile radius of interest. As
more gages are added, the coverage area wileventually approach 100%, slowing the rate of
AMS increasesdue to gageinflation . However, it is very difficult to speculate when this may
happen or what portion of the three-inch per century trend in Figure 10a arises due to gage
inflation. This would require the partitioning of each gageds contri buti on, whi c!|
ascertain due to various gagedata lengths.

While th e 60-mile radius used in Figure 10a may be too wideto be of direct influence for
VB, repeated analyses with radiuses of 25 miles and 15 miles(by the time we limit the radius of
interest to 15 miles, we are now at scale of the Lynnhaven watershed, whichs of direct interest
to VB), displayed similar results: that inclusion of all gages shows higher trends than
assessments thatonly consider the Norfolk Airport and Diamond Springs gages. Thus, the
salient take-away from Figure 10 is that when expanding the AMS analysis outside of the
standard protocol of using onerain gage rainfall recurrence statistics rapidly change. Stated
differently, what is termed a 100 -year at the Norfolk Airport gagebecomes a 1 in 50year event
for a 15mile radius of interest, and 1 in 35-year event for a 60-mile radius of interest. It is very
likely that the factors driving the increasing trend in Figure 10a include both gageinflation a nd
climate change. Although we cannot separate the two, both inform the flood risk in the VB
region, and are thus important for understanding how design rainfall standards may need to be
adjusted.
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a) Annual Max 24-hr Rainfall in Virginia Beach area [all stations]
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FigurelQ Results of lodaVel rainfall analysis.
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Regional-Level Stationarity Assessment

The chief limitation of the local -scale analysis is that many of thegages can be
simultaneously impacted by the same storm, thus causing correlation among gagesto become
an obstacle when assessinghe significance of heavy rainfall trends. To overcome this issue, we
further expandedtheanal ysi s t deval @WeRebgdtively defined such a region,
hereafter, the fivB Climate Region,0as an areain which heavy rainfall statistics are broadly
consistent with those of VB. One way to infer the spatial extent of such an areais to look at the
regional variations in extreme precipitation intensities. Figure 11 showshe variation in the
100-year 24-hour (100Y-24H) event, a commonly used event for design and planning
purposes. For VB, this value is 9.4 inches, with a range of 8.4 to 10.3nches when accounting
for uncertainty at the 90% confidence level (Bonnin et al. 2006 ). On a regional-level, it is seen
that amounts of eight- inchesor greater parallel the entire eastern Atlantic seaboard from
central Florida through Massachusetts. This is likely due to the fact that the entire region is
prone to land falling Atlantic tropical cyclones that recurve along the US Atlantic coast and
follow various routes north and no rtheastward. This was already confirmed when looking at

NOAA Atlas 14
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Figurel 1 Estimates of 298ar 24our precipitation across the eastern United States.
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the seasonality of heavy rainfall events in VB (Figure 3). Note that the distinct maximum

during the late summer and fall months (Figure 3) is consistent with the climatology of Atlantic
tropical cyclone activity. A simple way to capture these areaswith a common climate is to
include all rain gages within about 250 km (156 miles) of the Atlantic coast line. Other pockets
of eight-inch or greater 100Y-24H magnitudes are seen farther inland, but this is likely due to
enhancement from topographic features such asthe Blue Ridge Mountains. Such processesre
not relevant for VB heavy rainfall events and thus, these regionsare not included in the
analysis. Note that the Regional-Level analysis differs from the Local-Level analysis by using
only long-record gages, which can better inform climate change-related impacts.

We accessed daily rainfall records fromgages belonging tothe GHCN. Gages were selected

based onthe following criteria:

f Located wit hien r \éBroudhdyla5s0kra (156 miles) from Atlantic Ocean

coastline;

1 Years with more than nine days of missing data were excluded

1 The last qualifying year was 2007 or later (see Appendix A); and

1 Atleast 60 qualifying years of data.

The criteria above yielded 15 qualifying gages as shown inFigure 12.
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Figurel2 A total of 175 qualifying;fecayd GHCN gages were used for the historical analysis.
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In a similar approach to the gagelevel analysis, we investigated heavy rainfall trends using
three tests:

1. Trends in Annual Maximum Series to investigate changes inintensity i similar to the
gagelevel analysis presented earlier, but instead of showing the time series at eaclgage
we simply noted whether the trend was statistically significant (positive and negative
trends were characterized separately) at the 95% confidence level. Statistical
significance is based on calculating theSpearman correlation between the year and the
AMS. The Spearman method was preferred over the Pearson method because the
former is less sensitive to very rare but extreme events that can strongly affect the
Pearson correlation. Trends are considered significant if they exceed the 95% confidence
level.

2. Trends in PeaksOver-Threshold using the same 24-hour duration and threshold of 1.25
inches per day. Similar to (1), we were only interested in whether the trend is significant
at the 95% confidence level. A similar Spearman correlation test as in (1) is usedo
calculate significance.

3. Changes in the 99" percentile of the rainy-day distribution. This was assessed by finding
the 99t percentile over the 1985-2015 period and finding the percent change from the
99th percentile over the 19541984 time period. For additional perspective, we also
tabulated this percent change for the 70" percentile (corresponding to a light/moderate
rainfall event), which allowed us to determine whether the entire rainfall distribu tion is
changing, or just a portion of it. For example, peer-reviewed literature has suggested
that heavy precipitation events are projected to be more sensitive to climate change that
light and moderate events (e.g. Prein et al., 2016).

AMS values are increasing across the region, indicating nonstationarity well beyond a level
allowed simply by chance, as illustrated by Figure 13. Figure 13b shows the trend in the daily
AMS using qualifying gages and data through 2016. The AMS measures the highest daily
rainfall observed during t he calendar year. Of 175 qualifying stations, 33 stations (19%) show
significant trends. Using the 95% significance level, we would only expect 18 stations to show
significant trends, simply by chance. More importantly, of the 33 stations with a significan t
trend, 29 show positive trends. Again, by chance, we would only expect nine stations to show
positive trends. Interestingly, the Figure 13a showsthe analogous AMS trend, but restricted to
data through 2004. In that case, only 13 of 140 qualifying gagesshow trends (all 13 being
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Figurel3 Trends in Annual Maximum $eresl b) and Peaks Over Threshold (c and d). Panels (a) and (c) restrict dat:
2004, while panels (b) and (d) use values thiaRgeR8vefThresholtime series acalculated using number of
annual days exceeding 1.25 iatleesh gagdhe legend shows the number of statistically significant trends at the 95%

confidence level.
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